Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vet Res ; 55(1): 7, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225645

RESUMO

Carbonyl-reducing enzymes (CREs) catalyse the reduction of carbonyl groups in many eobiotic and xenobiotic compounds in all organisms, including helminths. Previous studies have shown the important roles of CREs in the deactivation of several anthelmintic drugs (e.g., flubendazole and mebendazole) in adults infected with the parasitic nematode Haemonchus contortus, in which the activity of a CRE is increased in drug-resistant strains. The aim of the present study was to compare the abilities of nematodes of both a drug-susceptible strain (ISE) and a drug-resistant strain (IRE) to reduce the carbonyl group of flubendazole (FLU) in different developmental stages (eggs, L1/2 larvae, L3 larvae, and adults). In addition, the effects of selected CRE inhibitors (e.g., glycyrrhetinic acid, naringenin, silybin, luteolin, glyceraldehyde, and menadione) on the reduction of FLU were evaluated in vitro and ex vivo in H. contortus adults. The results showed that FLU was reduced by H. contortus in all developmental stages, with adult IRE females being the most metabolically active. Larvae (L1/2 and L3) and adult females of the IRE strain reduced FLU more effectively than those of the ISE strain. Data from the in vitro inhibition study (performed with cytosolic-like fractions of H. contortus adult homogenate) revealed that glycyrrhetinic acid, naringenin, mebendazole and menadione are effective inhibitors of FLU reduction. Ex vivo study data showed that menadione inhibited FLU reduction and also decreased the viability of H. contortus adults to a similar extent. Naringenin and mebendazole were not toxic at the concentrations tested, but they did not inhibit the reduction of FLU in adult worms ex vivo.


Assuntos
Anti-Helmínticos , Ácido Glicirretínico , Haemonchus , Feminino , Animais , Mebendazol/farmacologia , Mebendazol/uso terapêutico , Vitamina K 3/farmacologia , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico , Larva , Ácido Glicirretínico/farmacologia
2.
Chemosphere ; 324: 138343, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36898439

RESUMO

Albendazole (ABZ), a broad-spectrum anthelmintic drug frequently used in livestock against parasitic worms (helminths), enters the environment mainly via faeces of treated animals left in the pastures or used as dung for field fertilization. To obtain information about the subsequent fate of ABZ, the distribution of ABZ and its metabolites in the soil around faeces along with uptake and effects in plants were monitored under real agricultural conditions. Sheep were treated with a recommended dose of ABZ; faeces were collected and used to fertilize fields with fodder plants. Soil samples (in two depths) and samples of two plants, clover (Trifolium pratense) and alfalfa (Medicago sativa), were collected at distances 0-75 cm from the faeces for 3 months after fertilization. The environmental samples were extracted using QuEChERS and LLE sample preparation procedures. The targeted analysis of ABZ and its metabolites was conducted by using the validated UHPLC-MS method. Two main ABZ metabolites, ABZ-sulfoxide (anthelmintically active) and ABZ-sulfone (inactive), persisted in soil (up to 25 cm from faeces) and in plants for three months when the experiment ended. In plants, ABZ metabolites were detected even 60 cm from the faeces and abiotic stress was observed in the central plants. The considerable distribution and persistence of ABZ metabolites in soil and plants amplify the negative environmental impact of ABZ documented in other studies.


Assuntos
Albendazol , Anti-Helmínticos , Ovinos , Animais , Albendazol/análise , Solo , Anti-Helmínticos/metabolismo , Fezes/química
3.
Life (Basel) ; 13(2)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36836878

RESUMO

Epstein-Barr virus (EBV), defined as a group I carcinogen by the World Health Organization (WHO), is present in the tumour cells of patients with different forms of B-cell lymphoma, including Burkitt lymphoma, Hodgkin lymphoma, post-transplant lymphoproliferative disorders, and, most recently, diffuse large B-cell lymphoma (DLBCL). Understanding how EBV contributes to the development of these different types of B-cell lymphoma has not only provided fundamental insights into the underlying mechanisms of viral oncogenesis, but has also highlighted potential new therapeutic opportunities. In this review, we describe the effects of EBV infection in normal B-cells and we address the germinal centre model of infection and how this can lead to lymphoma in some instances. We then explore the recent reclassification of EBV+ DLBCL as an established entity in the WHO fifth edition and ICC 2022 classifications, emphasising the unique nature of this entity. To that end, we also explore the unique genetic background of this entity and briefly discuss the potential role of the tumour microenvironment in lymphomagenesis and disease progression. Despite the recent progress in elucidating the mechanisms of this malignancy, much work remains to be done to improve patient stratification, treatment strategies, and outcomes.

4.
Artigo em Inglês | MEDLINE | ID: mdl-35738156

RESUMO

Albendazole (ABZ) is an anthelmintic frequently used to treat haemonchosis, a common parasitosis of ruminants caused by the gastrointestinal nematode Haemonchus contortus. This parasite is able to protect itself against ABZ via the formation of inactive ABZ-glycosides. The present study was designed to deepen the knowledge about the role of UDP-glycosyltransferases (UGTs) in ABZ glycosylation in H. contortus. The induction effect of phenobarbital, a classical inducer of UGTs, as well as ABZ and ABZ-sulphoxide (ABZSO, the main active metabolite of ABZ) on UGTs expression and UGT activity toward ABZ was studied ex vivo in isolated adult nematodes. The effect of three potential UGT inhibitors (5-nitrouracil, 4,6-dihydroxy-5-nitropyrimidine and sulfinpyrazone) on ABZ glycosylation was tested. Pre-incubation of nematodes with ABZ and ABZSO led to increased expression of several UGTs as well as ABZ-glycosides formation in subsequent treatment. Phenobarbital also induced UGTs expression, but did not affect ABZ biotransformation. In the nematode's subcellular fraction, sulfinpyrazone inhibited UGT activity toward ABZ, although no effect of other inhibitors was observed. The inhibitory potential of sulfinpyrazone on the formation of ABZ-glycosides was also proved ex vivo in living nematodes. The obtained results confirmed the role of UGTs in ABZ biotransformation in H. contortus adults and revealed sulfinpyrazone as a potent inhibitor of ABZ glycosylation in this parasite. The possible use of sulfinpyrazone with ABZ in combination therapy merits further research.


Assuntos
Anti-Helmínticos , Haemonchus , Nematoides , Doenças dos Ovinos , Albendazol , Animais , Anti-Helmínticos/uso terapêutico , Glicosídeos/metabolismo , Glicosídeos/farmacologia , Glicosídeos/uso terapêutico , Glicosiltransferases , Fenobarbital/metabolismo , Fenobarbital/farmacologia , Fenobarbital/uso terapêutico , Ovinos , Doenças dos Ovinos/tratamento farmacológico , Sulfimpirazona/metabolismo , Sulfimpirazona/farmacologia , Sulfimpirazona/uso terapêutico , Difosfato de Uridina
5.
Sci Total Environ ; 822: 153527, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35101480

RESUMO

Veterinary anthelmintics excreted from treated animals pass to soil, subsequently to plants and then to their consumers. This circulation might have various consequences, including drug-resistance promotion in helminths. The present study was designed to follow the effect of the environmental circulation of the common anthelmintic drug albendazole (ABZ) in real farm conditions on the parasitic nematode Haemonchus contortus in vivo. Two fields with fodder plants (clover and alfalfa) were fertilized, the first with dung from ABZ-treated sheep (at the recommended dosage), the second with dung from non-treated sheep (controls). After a 10-week growth period, the fresh fodder from both fields was used to feed two groups of sheep, which were infected with H. contortus. Eggs and adult nematodes from the animals of both groups were isolated, and various parameters were compared. No significant changes in the eggs' sensitivity to ABZ and thiabendazole were observed. However, significantly increased expression of several cytochromes P450 and UDP-glycosyl transferases as well as increased oxidation and glycosylation of ABZ and ABZ-sulfoxide (ABZ-SO) was found in the exposed nematodes. These results show that ABZ environmental circulation improves the ability of the helminths to deactivate ABZ.


Assuntos
Anti-Helmínticos , Haemonchus , Nematoides , Albendazol/metabolismo , Albendazol/farmacologia , Albendazol/uso terapêutico , Animais , Anti-Helmínticos/metabolismo , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico , Resistência a Medicamentos , Haemonchus/metabolismo , Ovinos
6.
Vet Res ; 52(1): 143, 2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34895342

RESUMO

Haemonchus contortus is a parasitic nematode of ruminants which causes significant losses to many farmers worldwide. Since the drugs currently in use for the treatment of haemonchosis are losing their effectiveness due to the drug-resistance of this nematode, a new or repurposed drug is highly needed. As the antipsychotic drug sertraline (SRT) has been shown to be effective against the parasitic nematodes Trichuris muris, Ancylostoma caninum and Schistosoma mansoni, the aim of the present study was to evaluate the possible effect of SRT on H. contortus. The potential hepatotoxicity of SRT was tested in sheep, a common H. contortus host. In addition, the main metabolic pathways of SRT in H. contortus and the ovine liver were identified. While no effect of SRT on H. contortus egg hatching was observed, SRT was found to significantly decrease the viability of H. contortus adults in drug-sensitive and resistant strains, with its effect comparable to the commonly used anthelmintics levamisole and monepantel. Moreover, SRT in anthelmintically active concentrations showed no toxicity to the ovine liver. Biotransformation of SRT in H. contortus was weak, with most of the drug remaining unmetabolized. Production of the main metabolite hydroxy-SRT did not differ significantly between strains. Other minor metabolites such as SRT-O-glucoside, dihydroxy-SRT, and SRT-ketone were also identified in H. contorts adults. Compared to H. contortus, the ovine liver metabolized SRT more extensively, mainly via desmethylation and glucuronidation. In conclusion, the potency of SRT against H. contortus was proven, and it should be tested further toward possible repurposing.


Assuntos
Anti-Helmínticos , Hemoncose , Sertralina , Doenças dos Ovinos , Animais , Anti-Helmínticos/farmacologia , Anti-Helmínticos/toxicidade , Biotransformação , Hemoncose/tratamento farmacológico , Hemoncose/veterinária , Haemonchus/efeitos dos fármacos , Sertralina/farmacologia , Sertralina/toxicidade , Ovinos , Doenças dos Ovinos/tratamento farmacológico
7.
Environ Pollut ; 286: 117590, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34438501

RESUMO

Anthelmintics, drugs against parasitic worms, are frequently used in livestock and might act as danger environmental microcontaminants. The present study was designed to monitor the possible circulation of common anthelmintic drug albendazole (ABZ) and its metabolites in the real agriculture conditions. The sheep were treated with the recommended dose of ABZ. Collected faeces were used for the fertilization of a field with fodder plants (alfalfa and clover) which served as feed for sheep from a different farm. The selective ultrasensitive mass spectrometry revealed surprisingly high concentrations of active ABZ metabolite (ABZ-sulphoxide) in all samples (dung, plants, ovine plasma, rumen content and faeces). Our results prove for the first time an undesirable permeation of ABZ metabolites from sheep excrement into plants (used as fodder) and subsequently to other sheep in real agricultural conditions. This circulation causes the permanent exposition of the ecosystems and food-chain to the drug and can promote the development of drug resistance in helminths.


Assuntos
Anti-Helmínticos , Drogas Veterinárias , Albendazol , Animais , Ecossistema , Fazendas , Ovinos
8.
Int J Mol Sci ; 22(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206260

RESUMO

Although manure is an important source of minerals and organic compounds it represents a certain risk of spreading the veterinary drugs in the farmland and their permeation to human food. We tested the uptake of the anthelmintic drug fenbendazole (FBZ) by soybean, a common crop plant, from the soil and its biotransformation and accumulation in different soybean organs, including beans. Soybeans were cultivated in vitro or grown in a greenhouse in pots. FBZ was extensively metabolized in roots of in vitro seedlings, where sixteen metabolites were identified, and less in leaves, where only two metabolites were found. The soybeans in greenhouse absorbed FBZ by roots and translocated it to the leaves, pods, and beans. In roots, leaves, and pods two metabolites were identified. In beans, FBZ and one metabolite was found. FBZ exposure did not affect the plant fitness or yield, but reduced activities of some antioxidant enzymes and isoflavonoids content in the beans. In conclusion, manure or biosolids containing FBZ and its metabolites represent a significant risk of these pharmaceuticals entering food consumed by humans or animal feed. In addition, the presence of these drugs in plants can affect plant metabolism, including the production of isoflavonoids.


Assuntos
Fenbendazol/metabolismo , /metabolismo , Transporte Biológico , Biotransformação , Fenbendazol/farmacocinética
9.
Front Physiol ; 11: 594116, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33324241

RESUMO

The nematode Haemonchus contortus, a gastrointestinal parasite of ruminants, can severely burden livestock production. Although anthelmintics are the mainstay in the treatment of haemonchosis, their efficacy diminishes due to drug-resistance development in H. contortus. An increased anthelmintics inactivation via biotransformation belongs to a significant drug-resistance mechanism in H. contortus. UDP-glycosyltransferases (UGTs) participate in the metabolic inactivation of anthelmintics and other xenobiotic substrates through their conjugation with activated sugar, which drives the elimination of the xenobiotics due to enhanced solubility. The UGTs family, in terms of the biotransformation of commonly used anthelmintics, has been well described in adults as a target stage. In contrast, the free-living juvenile stages of H. contortus have attracted less attention. The expression of UGTs considerably varies throughout the life cycle of the juvenile nematodes, suggesting their different roles. Furthermore, the constitutive expression in a susceptible strain with two resistant strains shows several resistance-related changes in UGTs expression, and the exposure of juvenile stages of H. contortus to albendazole (ABZ) and ABZ-sulfoxide (ABZSO; in sublethal concentrations) leads to the increased expression of several UGTs. The anthelmintic drug ABZ and its primary metabolite ABZSO biotransformation, tested in the juvenile stages, shows significant differences between susceptible and resistant strain. Moreover, higher amounts of glycosidated metabolites of ABZ are formed in the resistant strain. Our results show similarly, as in adults, the UGTs and glycosidations significant for resistance-related differences in ABZ biotransformation and warrant further investigation in their individual functions.

10.
Molecules ; 25(16)2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32796616

RESUMO

In recent years interest has grown in the occurrence and the effects of pharmaceuticals in the environment. The aim of this work is to evaluate the risk of fertilizing crops with manure from livestock treated with anthelmintics. The present study was designed to follow the fate of the commonly used anthelmintic drug, ivermectin (IVM) and its metabolites in soybeans (Glycine max (L.) Merr.), a plant that is grown and consumed world-wide for its high content of nutritional and health-beneficial substances. In vitro plantlets and soybean plants, cultivated in a greenhouse, were used for this purpose. Our results showed the uptake of IVM and its translocation to the leaves, but not in the pods and the beans. Four IVM metabolites were detected in the roots, and one in the leaves. IVM exposure decreased slightly the number and weight of the beans and induced changes in the activities of antioxidant enzymes. In addition, the presence of IVM affected the proportion of individual isoflavones and reduced the content of isoflavones aglycones, which might decrease the therapeutic value of soybeans. Fertilization of soybean fields with manure from IVM-treated animals appears to be safe for humans, due to the absence of IVM in beans, the food part of plants. On the other hand, it could negatively affect soybean plants and herbivorous invertebrates.


Assuntos
Antioxidantes/metabolismo , Isoflavonas/metabolismo , Ivermectina/farmacologia , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Sementes/metabolismo , Antiparasitários/farmacologia , Transporte Biológico , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , /crescimento & desenvolvimento
11.
Int J Mol Sci ; 21(16)2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32824876

RESUMO

Albendazole (ABZ), a widely used anthelmintic drug, enters the environment mainly via livestock excrements. To evaluate the environmental impact of ABZ, the knowledge of its uptake, effects and metabolism in all non-target organisms, including plants, is essential. The present study was designed to identify the metabolic pathway of ABZ and to test potential ABZ phytotoxicity in fodder plant alfalfa, with seeds and in vitro regenerants used for these purposes. Alfalfa was chosen, as it may meet manure from ABZ-treated animals in pastures and fields. Alfalfa is often used as a feed of livestock, which might already be infected with helminths. The obtained results showed that ABZ did not inhibit alfalfa seed germination and germ growth, but evoked stress and a toxic effect in alfalfa regenerants. Alfalfa regenerants were able to uptake ABZ and transform it into 21 metabolites. UHPLC-MS/MS analysis revealed three new ABZ metabolites that have not been described yet. The discovery of the parent compound ABZ together with the anthelmintically active and instable metabolites in alfalfa leaves shows that the contact of fodder plants with ABZ-containing manure might represent not only a danger for herbivorous invertebrates, but also may cause the development of ABZ resistance in helminths.


Assuntos
Albendazol/farmacologia , Anti-Helmínticos/farmacologia , Medicago sativa/efeitos dos fármacos , Metaboloma , Ração Animal , Germinação , Medicago sativa/crescimento & desenvolvimento , Medicago sativa/metabolismo
12.
Vet Res ; 51(1): 94, 2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32703268

RESUMO

The efficacy of anthelmintic therapy of farm animals rapidly decreases due to drug resistance development in helminths. In resistant isolates, the increased expression and activity of drug-metabolizing enzymes (DMEs), e.g. cytochromes P450 (CYPs), UDP-glycosyltransferases (UGTs) and P-glycoprotein transporters (P-gps), in comparison to sensitive isolates have been described. However, the mechanisms and circumstances of DMEs induction are not well known. Therefore, the present study was designed to find the changes in expression of CYPs, UGTs and P-gps in adult parasitic nematodes Haemonchus contortus exposed to sub-lethal doses of the benzimidazole anthelmintic drug albendazole (ABZ) and its active metabolite ABZ-sulfoxide (ABZSO). In addition, the effect of ABZ at sub-lethal doses on the ability to deactivate ABZ during consequent treatment was studied. The results showed that contact of H. contortus adults with sub-lethal doses of ABZ and ABZSO led to a significant induction of several DMEs, particularly cyp-2, cyp-3, cyp-6, cyp-7, cyp-8, UGT10B1, UGT24C1, UGT26A2, UGT365A1, UGT366C1, UGT368B2, UGT367A1, UGT371A1, UGT372A1 and pgp-3, pgp-9.1, pgp-9.2, pgp-10. This induction led to increased formation of ABZ metabolites (especially glycosides) and their increased export from the helminths' body into the medium. The present study demonstrates for the first time that contact of H. contortus with sub-lethal doses of ABZ (e.g. during underdose treatment) improves the ability of H. contortus adults to deactivate ABZ in consequent therapy.


Assuntos
Albendazol/análogos & derivados , Albendazol/farmacologia , Antinematódeos/farmacologia , Resistência a Medicamentos , Haemonchus/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Haemonchus/enzimologia , Inativação Metabólica
13.
Environ Sci Pollut Res Int ; 27(25): 31202-31210, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32483720

RESUMO

The anthelmintic drug ivermectin (IVM), used frequently especially in veterinary medicine, enters the environment mainly via excrements in pastures and could negatively affect non-target organisms including plants. The present study was designed to follow up on our previous investigations into IVM metabolism and its effects in the common meadow plant ribwort plantain (Plantago lanceolata L.) during long-term exposure of both cell suspensions and whole plant regenerants. IVM uptake, distribution, and biotransformation pathways were studied using UHPLC-MS analysis. In addition, the IVM effect on antioxidant enzymes activities, proline concentration, the content of all polyphenols, and the level of the main bioactive secondary metabolites was also tested with the goal of learning more about IVM-induced stress in the plant organism. Our results showed that the ribwort plantain was able to uptake IVM and transform it via demethylation and hydroxylation. Seven and six metabolites respectively were detected in cell suspensions and in the roots of regenerants. However, only the parent drug IVM was detected in the leaves of the regenerants. IVM accumulated in the roots and leaves of plants might negatively affect ecosystems due to its toxicity to herbivorous invertebrates. As IVM exposition increased the activity of catalase, the concentration of proline and polyphenols, as well as decreased the activity of ascorbate peroxidase and the concentration of the bioactive compounds acteoside and aucubin, long-term exposition of the ribwort plantain to IVM caused abiotic stress and might decrease the medicinal value of this herb.


Assuntos
Plantago , Ecossistema , Frutas , Ivermectina , Verduras
14.
J Matern Fetal Neonatal Med ; 33(22): 3784-3790, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30810408

RESUMO

Purpose: To evaluate vitamin D status in mothers and their very low birth weight infants (VLBW) at birth (umbilical cord blood) and at discharge with currently recommended supplementation of vitamin D.Methods: Ninety-four infants with birth weight less than 1500 g completed the study. The total daily vitamin D intake was 800-1000 IU. We examined 25-hydroxyvitamin-D [25(OH)D] levels in maternal serum before labor, in cord blood, and in infants' serum at discharge.Results: Median (IQR) serum 25(OH)D was 21 (14-36) nmol/l [8 (6-15) ng/ml] in cord blood, and 46 (37-60) nmol/l [18 (15-24) ng/ml] at discharge. Serum 25(OH)D was <50 nmol/L in 71.3% of mothers, in 91.5% of cord blood samples, and in almost 60% of preterm newborns at discharge (after 8 weeks of supplementation). Serum 25(OH)D was <75 nmol/L in 88.3% of mothers, in 97.9% of cord blood samples, and in 91.4% of preterm newborns at discharge.Conclusions: In our cohort, we found that due to the very high prevalence of 25(OH)D deficiency among mothers, the current generally recommended dose of vitamin D (800-1000 IU per day) for VLBW infants was unable to improve vitamin D levels above the desired 50 or even 75 nmol/L before discharge.


Assuntos
Alta do Paciente , Deficiência de Vitamina D , Suplementos Nutricionais , Feminino , Humanos , Lactente , Recém-Nascido , Recém-Nascido de muito Baixo Peso , Vitamina D , Deficiência de Vitamina D/tratamento farmacológico , Deficiência de Vitamina D/prevenção & controle
15.
Chemosphere ; 237: 124434, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31374394

RESUMO

Drugs are potentially dangerous environmental contaminants, as they are designed to have biological effects at low concentrations. Monepantel (MOP), an amino-acetonitrile derivative, is frequently used veterinary anthelmintics, but information about MOP environmental circulation and impact is almost non-existent. We studied the phytotoxicity, uptake and biotransformation of MOP in two fodder plants, Plantago lanceolata and Medicago sativa. The seeds and whole plant regenerants were cultivated with MOP. The plant roots and the leaves were collected after 1, 2, 3, 4, 5 and 6 weeks of cultivation. The lengths of roots and proline concentrations in the roots and leaves were measured to evaluate MOP phytotoxicity. The UHPLC-MS/MS technique with a Q-TOF mass analyser was used for the identification and semi-quantification of MOP and its metabolites. Our results showed no phytotoxicity of MOP. However, both plants were able to uptake, transport and metabolize MOP. Comparing both plants, the uptake of MOP was much more extensive in Medicago sativa (almost 10-times) than in Plantago lanceolate. Moreover, 9 various metabolites of MOP were detected in Medicago sativa, while only 7 MOP metabolites were found in Plantago lanceolata. Based on metabolites structures, scheme of the metabolic pathways of MOP in both plants was proposed. MOP and its main metabolite (MOP sulfone), both anthelmintically active, were present not only in roots but also in leaves that can be consumed by animals. This indicates the potential for undesirable circulation of MOP in the environment, which could lead to many pharmacological and toxicological consequences.


Assuntos
Aminoacetonitrila/análogos & derivados , Ração Animal/toxicidade , Anti-Helmínticos/toxicidade , Poluição Ambiental , Pradaria , Medicago sativa/metabolismo , Plantago/metabolismo , Aminoacetonitrila/farmacocinética , Aminoacetonitrila/toxicidade , Animais , Transporte Biológico , Biotransformação , Gado , Redes e Vias Metabólicas , Sulfonas , Espectrometria de Massas em Tandem
16.
Chemosphere ; 234: 528-535, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31229714

RESUMO

Veterinary drugs enter the environment in many ways and may affect non-target organisms, including plants. The present project was focused on the biotransformation of ivermectin (IVM), one of the mostly used anthelmintics, in the model plant Arabidopsis thaliana. Our results certified the ability of plants to uptake IVM by roots and translocate it to the aboveground parts. Using UHPLC-MS/MS, six metabolites in roots and only the parent drug in rosettes were found after 24- and 72-h incubation of A. thaliana with IVM. The metabolites were formed only via hydroxylation and demethylation, with no IVM conjugates detected. Although IVM did not induce changes in the activity of antioxidant enzymes in A. thaliana rosettes, the expression of genes was significantly affected. Surprisingly, a higher number of transcripts, 300 and 438, respectively, was dysregulated in the rosettes than in roots. The significantly affected genes play role in response to salt, osmotic and water deprivation stress, in response to pathogens and in ion homeostasis. We hypothesize that the above described changes in gene transcription in A. thaliana resulted from disrupted ionic homeostasis caused by certain ionophore properties of IVM. Our results underlined the negative impact of IVM presence in the environment.


Assuntos
Arabidopsis/genética , Ivermectina/farmacocinética , Transcriptoma/efeitos dos fármacos , Anti-Helmínticos/metabolismo , Anti-Helmínticos/farmacocinética , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Biotransformação , Ivermectina/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Espectrometria de Massas em Tandem
17.
Chemosphere ; 218: 662-669, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30502705

RESUMO

Fenbendazole, a broad spectrum anthelmintic used especially in veterinary medicine, may impact non-target organisms in the environment. Nevertheless, information about the effects of fenbendazole in plants is limited. We investigated the biotransformation of fenbendazole and the effect of fenbendazole and its metabolites on gene expression in the model plant Arabidopsis thaliana. High-sensitive UHPLC coupled with tandem mass spectrometry, RNA-microarray analysis together with qPCR verification and nanoLC-MS proteome analysis were used in this study. Twelve fenbendazole metabolites were identified in the roots and leaves of A. thaliana plants. Hydroxylation, S-oxidation and glycosylation represent the main fenbendazole biotransformation pathways. Exposure of A. thaliana plants to 5 µM fenbendazole for 24 and 72 h significantly affected gene and protein expression. The changes in transcriptome were more pronounced in the leaves than in roots, protein expression was more greatly affected in the roots at a shorter period of exposure (24 h) and in leaf rosettes over a longer period (72 h). Up-regulated (>2-fold change, p < 0.1) proteins are involved in various biological processes (electron transport, energy generating pathways, signal transduction, transport), and in response to stresses (e.g. catalase, superoxide dismutase, cytochromes P450, UDP-glycosyltransferases). Some of the proteins which were up-regulated after fenbendazole-exposure probably participate in fenbendazole biotransformation (e.g. cytochromes P450, UDP-glucosyltransferases). Finally, fenbendazole in plants significantly affects many physiological and metabolic processes and thus the contamination of ecosystems by manure containing this anthelmintic should be restricted.


Assuntos
Arabidopsis/metabolismo , Fenbendazol/metabolismo , Proteoma/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Anti-Helmínticos/metabolismo , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Fenbendazol/farmacocinética , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Proteoma/metabolismo , Proteômica/métodos
18.
J Matern Fetal Neonatal Med ; 32(17): 2860-2867, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29562766

RESUMO

Purpose: The aim of this pilot study was to estimate physiological parathyroid hormone (PTH) levels and their relationship with bone metabolism parameters in otherwise healthy preterm newborns with birth weight 1000-1500 g. Methods: PTH, 25(OH)D, S-Ca, S-P, and ALP were analysed from blood samples obtained from 20 preterm infants once a week up to the 36th gestational week. Results: Of the total 134 examined serum samples for PTH levels, the estimated range was 1.6-9.3 pmol/l (15.1-87.7 pg/ml). No statistically significant correlation of PTH level with that of S-Ca, S-P, or ALP was observed, except for the 56th day of life (p = .03; Rho = 0.76; n = 8). From the second month of life, there was a statistically significant relationship only between PTH and 25(OH)D (Rho = -0.71, p ≤ .0001). In our cohort, vitamin D deficiency (20 ng/ml) occurred in 75% at birth and at 30% in the 36th gestational week. Conclusions: The physiological range indicated by the measurements was close to the reference limits for adults (1-7 pmol/l; 9.4-66 pg/ml). PTH level above this range can be considered as hyperparathyroidism in preterm neonates.


Assuntos
Densidade Óssea , Doenças Ósseas Metabólicas/diagnóstico , Calcitriol/sangue , Hormônio Paratireóideo/sangue , Deficiência de Vitamina D/sangue , Biomarcadores/sangue , Doenças Ósseas Metabólicas/sangue , Cordocentese , Feminino , Idade Gestacional , Humanos , Hiperparatireoidismo/diagnóstico , Lactente , Recém-Nascido de Peso Extremamente Baixo ao Nascer , Recém-Nascido , Recém-Nascido Prematuro , Masculino , Projetos Piloto , Estudos Prospectivos , Deficiência de Vitamina D/diagnóstico
19.
Arch Dis Child Fetal Neonatal Ed ; 104(1): F50-F56, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29353262

RESUMO

OBJECTIVE: To evaluate the amount of macronutrients in aggregate of human milk samples after preterm delivery during the first 2 months of lactation. METHODS: Analysis of the donated single milk samples, gained by complete emptying of the whole breast at the same daytime between 24+0 and 35+6 gestational age (GA), was designed as prospective observational cohort trial. Two milk samples were analysed every postnatal week up to the discharge from the hospital, week 9 or loss of lactation. 24-Hour milk collection was not done. Analysis was performed using the MIRIS Human Milk Analyser (MIRIS AB, Uppsala, Sweden). RESULTS: A set of 1917 human milk samples donated by 225 mothers after preterm labour was analysed. Group A (24-30 GA) contains 969 milk samples; group B (31-35 GA) contains 948 milk samples. No difference in milk composition between the groups was identified. Median of true protein content decreased from 1.6 g/dL in group A and 1.5 g/dL in group B in the first week of life, to 1.1 g/dL in both groups at the end of week 3, and then remained stable up to week 9. Content of carbohydrates and fat was stable during the whole observation, with interindividual differences. CONCLUSION: Human milk does not differ as a function of degree of prematurity. Protein content of preterm human milk is low and decreases during the first 3 weeks of lactation. Recommended daily protein intake cannot be achieved with routine fortification in majority of milk samples.


Assuntos
Idade Gestacional , Proteínas do Leite/análise , Leite Humano/química , Nutrientes/análise , Nascimento Prematuro/patologia , Aleitamento Materno , Humanos , Lactente , Recém-Nascido , Estudos Prospectivos
20.
J Matern Fetal Neonatal Med ; 29(14): 2373-7, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26507934

RESUMO

OBJECTIVE: To evaluate the influence of microbial invasion of the amniotic cavity (MIAC) and histological chorioamnionitis (HCA) on short-term neonatal outcome in women with preterm prelabor rupture of membranes before 34 weeks of gestation. METHODS: A prospective observational cohort study including 122 pregnant women with PPROM between 24+0 and 34+0. MIAC was defined as a positive PCR result for Ureaplasma species, Mycoplasma hominis and Chlamydia trachomatis and/or positive PCR result for the 16S rRNA gene in the amniotic fluid. HCA was defined according to the Salafia classification. Maternal and short-term neonatal outcomes were evaluated according to the presence or absence of MIAC and/or HCA. RESULTS: The presence of both MIAC and HCA was observed in 36% (45/122) of women, HCA alone in 34% (41/122) and MIAC in 5% (6/122). A significantly higher incidence of early onset sepsis was observed in newborns born from women with both MIAC and HCA [33% (15/45)] compared with women with HCA alone [12% (5/41)] or MIAC alone [0% (0/6)] or women without MIAC or HCA detected [0% (0/30); p = 0.001]. CONCLUSIONS: The presence of both MIAC and HCA increases the risk of early onset sepsis in pregnancies complicated by preterm prelabor rupture of membranes before 34 weeks of gestation.


Assuntos
Líquido Amniótico/microbiologia , Corioamnionite/epidemiologia , Ruptura Prematura de Membranas Fetais/epidemiologia , Sepse Neonatal/epidemiologia , Adolescente , Adulto , Corioamnionite/microbiologia , República Tcheca/epidemiologia , Feminino , Idade Gestacional , Humanos , Recém-Nascido , Gravidez , Estudos Prospectivos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...